
ULTIMATE
KANBAN

C A S E S T U D Y

S C A L I N G A G I L E W I T H O U T
F R A M E W O R K S A T U L T I M A T E
S O F T W A R E

Courtesy of:

Steve Reid - Ult imate Software

Prateek Singh - Ult imate Software

Daniel S. Vacanti - ActionableAgi leTM

KEY TAKEAWAYS

 • Simple cycle time metrics can drive valuable

conversations and changes.

 • Autonomy of process at the team level has major

advantages in terms of productivity and

predictability

 • Scaling Agile practices can be done without

implementing expensive pre-defined frameworks

 • Probabilistic forecasting can provide early

warning signs streamline planning

 • Working in a continuous flow model makes

pivoting and responding to information easy

INTRODUCTION

Ultimate Software is a leading provider of Global

HR and Payroll software. The company has been

ranked on “Fortune’s 25 Best Companies to Work

For” list for the past 5 years and was named “#1

Best Company to Work For in Tech” for 2016.

Ultimate Software has a vibrant “People First”

culture. Every layer of management from the CEO

to the Team Leads encourages and empowers

employees to be innovative and creative when

approaching their daily tasks.

The company takes great care of their employees,

and the motto “People First” applies not only to the

users of their products but also to the environment

provided to Ultimate’s employees. 1

The development organization at Ultimate is made

up of 900 people spread across 25 teams—all 25 of

which follow Agile principles. Agile practices are a

necessity at Ultimate for two reasons:

 1. A hyper-competitive marketplace

 2. The need to immediately react to the enactment

of federal, state and local laws concerning payroll,

taxation and human resources (e.g., The Affordable

Care Act)

After failed attempts to do Scrum at scale, Ultimate

finally settled on Kanban as its scaled methodology

of choice.

Kanban provided a framework that went hand in

hand with the company’s culture of autonomy.

Teams were able to define their own process and

apply policies that were specific to their own

context.

The results of this autonomy of process, which was

an extension of the cultural values of Ultimate

Software, as you are about to see, speak for

themselves

BACKGROUND

Ultimate started experimenting with Agile

principles (namely, Scrum) in 2005. This initial

transition to Scrum provided Ultimate with better

visibility into the progress of teams towards wider

business goals.
2

However, there were some common sources of

interruption that Scrum did not handle very well.

Regulatory changes that required immediate

attention often forced teams to throw out plans for

their sprints and start work for the new

requirements.

The ideal small Scrum team size (7-9 members) led

to arbitrarily small teams with a very high cross-

team coordination costs. Most importantly, though,

after trying our hand at Scrum for a while, we did

not see any major improvement in productivity.

After struggling with Scrum for a while, Ultimate

attempted a “reboot” by retraining the leads of the

teams in Scrum principles. This time, however, the

training was supplemented with practices from

Lean and XP. To our dismay, this reboot still did

not provide the hyper-productivity that the

company was seeking.

At this point, the leadership in Product

Development started to experiment with Kanban.

As our first shot with Kanban, we selected the

infrastructure team as that team was particularly

problematic. Without explicitly changing

methodologies from Scrum to Kanban, we started

visualizing their work on a board.

We also started limiting the number of work items

that each member of the team had in progress. The

team still performed the scrum ceremonies for a

while before eventually deciding to abandon sprint

planning and sprint reviews.
3

Limiting WIP and visualizing work had an almost

immediate effect on the team. The team was able to

keep up with the tickets that were coming their way

and were able to stay on track.

As the team achieved more by working on less, they

fully adopted the principles of flow. Given our

success, we repeated this approach with another

core Product Development team. This again, turned

out to be a success.

It wasn’t long before all teams were moved to a

Kanban system.

The impact of this move was felt immediately. As

Kanban has no explicit limit on team size, it

allowed us to collapse business lines into large

teams to allow for lower transaction costs.

During the initial period of formation of these

larger teams, the larger group behaved more like a

team of teams.

The smaller teams had formed strong bonds and

sub-cultures that took some time to become

integral parts of a larger team culture. Once the

teams started rowing in the same direction, the

transitions to the large teams started to bear fruit.

The adoption of Kanban also marked the first time

that we started to see the hyper-productivity that

Agile promised.

4

Kanban principles and flow metrics helped the

teams begin to achieve the productivity results that

we had been looking for since the start of our Agile

journey. These results are discussed in detail in the

next section

RESULTS WITH
KANBAN

It was late 2014 when we renewed our focus on

Kanban. We retrained every team in the

organization on the importance of Kanban

principles in combination with flow metrics.

Every team in development attended a 2-day

course where the principles of flow and Kanban

were laid out. The teams left the training with

having created the map of their processes

together.

We focused on the benefits of explicitly mapping

out and visualizing the process, limiting WIP and

managing for flow.

This fell in line with our theme of autonomy for

teams and individuals. Every member of the team

was involved in the exercise of defining the

process, deciding the WIP limits and laying out the

policies that the team would adhere to.

The teams started paying attention to basic flow

metrics: Work In Progress (WIP), Cycle Time, and

Throughput. 5

If you are not familiar with these concepts, then we

highly recommend reading the book “Actionable

Agile Metrics for Predictability” by Daniel Vacanti.

The results were far better than we expected and

are detailed in the individual team cases outlined

below.

THE ACES TEAM

 • Team responsible for greenfield development of

new Pay Calculation Engine

 • 60% reduction in Cycle Time for stories from 35

days @ the 85th percentile (using Scrum) to 14 days

@ the 85th percentile (using Kanban)

 • Lost half the team due to the decision to

refocus some resources on other projects, yet

recorded a 10% increase in story Throughput

The ACES team started in 2013 as a 16-member

Scrum team whose sole responsibility was the

development of a new Pay Calculation Engine.

In early days of Scrum, the team was widely

considered successful because it delivered a

consistent velocity.

Upon examining the team’s data in the light of flow

metrics, however, we discovered that there were

extreme inefficiencies in its development process.

When remedied, the gained efficiencies resulted in

higher productivity and greater predictability.

6

https://www.amazon.com/Actionable-Agile-Metrics-Predictability-Introduction/dp/098643633X

One of the best charts to demonstrate the

predictability of a team is a Cycle Time Scatterplot.

The Scatterplots below contrast the performance of

the team before and after adjusting their processes

based on Kanban principles:

Figure 1: ACES Team Cycle Time Scatterplot Before

Kanban (left) and After Kanban (right)

The top chart in Figure 1 above shows that when

the team was using Scrum practices, 85% of its

stories took 30 days or less to complete.

7

A 35-day Cycle Time in and of itself is not

necessarily bad unless you put it in the context of

the fact that the team was running 14-day sprints.

Further, 50% of the stories completed in that same

time frame took 15 days or less to complete.

What that means is that stories that started at the

beginning of a sprint only had about a 50% chance

of completing within that same sprint. This is not

the picture of predictability that the Scrum velocity

metrics would lead us to believe.

After taking note of the Scatterplot, the team began

to dive into the reasons why stories were taking so

long to complete. What they discovered was that

most long-lived stories were sitting in the “Ready

for QA” column for extended periods of time.

That was a problem because “Ready for QA” is a

queuing column where stories just sit and are not

actively worked on.

These “waiting” columns are the low hanging fruit

of process improvement and so it was “Ready for

QA” that the team decided to attack first by putting

a WIP limit of 5 on that column.

This decision meant that developers could not pull

in new work if there were 5 or more things waiting

for QA. They would instead have to go help with

the testing of the product. This implication was

discussed and accepted by the team as the

appropriate behavior to ensure the flow of work.
8

The result of these policy changes were almost

immediate. From that point forward (see the right

chart in Figure 2) the team was able to get 85% of

their stories done in 14 days or less.

Throughput for ACES also increased from 1.07

stories per day to 1.41 stories per day. This was

achieved in the same time period when the team

size was reduced to half of the original size.

These modifications did not include changing the

size of stories or working overtime.

The team continued to hone their flow-focused

process by further lowering the WIP limit on the

Ready for QA column and encouraging the various

disciplines on the team to help each other out in

order to make sure none of the items on the board

age beyond their 85th percentile.

This meant more testing was being done by

developers and at times more development work

was being done by testers.

 Eventually the lines between the roles became

very blurred. This helped the team became a very

well-functioning and close knit group.

They understood the demands of different roles

better and solved problems as a collective.

9

PAYROLL TEAM

 • Responsible for core payroll functionality in a

context characterized by frequent interrupts of

urgent customer requests.

 • 79% reduction in average queuing time for

stories from 8.84 days to 1.88 days

 • 69% reduction in story Cycle Time from 36 days

@ the 85th percentile to 11 days @ the 85th

percentile

The Payroll team maintains and develops the core

payroll capabilities for Ultimate Software’s flagship

product, Ultipro. This is a 30-person team formed

in 2009 by combining three separate smaller Scrum

teams.

It should be noted that this team had a consistent

history of being interrupted by urgent customer

issues (think about how upset you might be if your

paycheck was not calculated correctly or

distributed on time).

After Kanban re-training in 2015, the Payroll team

immediately changed the way they worked. One

dramatic change they made was to lower their WIP

limits on their board below the total number of

people on the team.

The idea behind this change was to promote

pairing and remove knowledge silos. This also left

slack in the system to allow for the team to deal

with emergency customer issues when they came

up. 10

The adoption of such a strict WIP limit meant more

pairing on the less commonly understood areas of

the system.

Some of the individuals on the team reluctantly

agreed to the change and tried it out for

themselves. This forced them to adopt practices like

test first, pairing and cross discipline collaboration.

The result of embracing these policies and practices

was immediately visible in how long it was taking

the team to complete their stories.

The amount of time stories spent in queuing

states decreased dramatically over time and as a

result the Cycle Times for the team went through a

dramatic decrease as well.

The table below shows the faster Cycle Times since

the team’s training at the end of March 2015.

Figure 2: Payroll Cycle Times vs. Queuing Times

11

As the team got more efficient in the use of a

Kanban system and started tweaking their process

policies, they were able to gain greater consistency

in story completion times (at the 85th percentile—

again, see Figure 2).

The teams taking control of their own processes

was a test of one of the main underpinnings of the

cultural norms of Ultimate Software - Autonomy. In

the case of Payroll and almost every other team in

development, the managers took a step back to act

as coaches, so that the team can have the

autonomy to adjust the way they work.

The teams, for the most part, did not see this as an

extra burden, but instead relished the increased

flexibility.

The greater predictability of Cycle Times had two

immediate effects. First, the team was able to

deliver value to the customers faster and more

regularly.

Second, when an emergency issue did come up, the

team could ask the question of “Can this wait until

we finish one of the items we are currently working

on?”.

As work items were getting done faster, there was a

regular stream of people freeing up to pick up the

next item. With a team member freeing up on a

daily basis, the team could ask the requesting party

to hold off for a couple of hours or till the next

morning.

12

In case of absolute emergencies though, the paired

team members could break the pairs in order to

deal with the escalations. The same question could

not be asked if the team was taking upwards of 20

days on average to finish work items.

The manager of the team had this to say about their

experience with Kanban principles:

“At first we laughed at the thought of intentionally

limiting our Work In Progress and simplifying our

Kanban board. We truly believed that this approach

would “never work for our team”. That was before

April’s Kanban training. We transformed our board,

changed the format of our Standup and implemented

sensible WIP limits and the way we work changed

forever.

Before Kanban 2.0, we thought we must be “slacking” if

we had fewer than 40 stories on the board. Today we

rarely break 20. Much to our surprise we discovered

that the ideas from our training really do work for us!

…This lets us adjust our feature work more rapidly

and deliver higher quality features.

As a manager, it’s now possible for me see to all of the

team’s work at a glance and pinpoint areas of concern

before catastrophe strikes! Finally, having stable cycle-

time and Throughput data allows us to truly predict

our capabilities for future release planning and

emergency requests from Production.

Today we laugh, or cry, when we think about the way

we worked before!” - Leighton Gill - Manager of

Software Engineering” 13

ORGANIZATION WIDE
IMPACT

The improvements outlined above were not limited

to just these two teams. In fact, the advances

shown here were largely exhibited by all teams

across the entire development organization. There

was a marked increase in both the number of

stories completed and the number of features

completed between 2014 and 2015.

The shorter story Cycle Times translated into faster

completion of features. Faster completion of

features translated into a dramatic increase in the

total number of features delivered to customers:

 from 176 in 2014 to 411 in 2015. Looking at the

month over month comparisons, every month in

2015 was more productive than the same month in

2014.

Figure 3: Month Over Month Comparisons of Features

Completed
14

Ultimate Software’s culture played a great part in

aiding these transformations. The autonomy

provided to employees and management trusting

that employees will do the right thing for the

business was a catalyst in the adoption of these

practices.

The team members rarely displayed a “not my job”

attitude and responded to management’s trust by

donning different hats to ensure flow of value

through the development pipeline.

These organization wide improvements had the

ultimate effect of streamlining our release planning

process.

That Cycle Times were so predictable and

Throughput was so stable that it allowed us to

experiment with more sophisticated planning

techniques—the most important of which was

Monte Carlo Simulation.

MONTE CARLO
S IMULATIONS &
PROBABILISTIC
RELEASE PLANNING &
TRACKING

Monte Carlo Simulation (MCS) is a forecasting

technique where a process’s past data is used to

simulate a system’s future performance.

15

The simulation technique produces a summary of

risk levels that the business can use to determine

how much risk it is willing to accept. We don’t have

space to go into too much detail about what MCS is

and how to use it, so we invite you to explore the

method on your own.

RELEASE PLANNING

MCS is particularly useful to figure out the

probability of meeting a certain delivery date given

the number of stories needed to be done by that

date.

The simulations, run at different points in the

release can tell us if the team is falling behind on

its commitments, is on track to meet its date, or

can pull more work into the release.

As opposed to getting a singular result by using

averages, Monte Carlo provides a wider range of

possible results with varying degrees of

confidence.

This gives the team the ability to commit at

whichever level of confidence the team and the

product manager agree to.

Since the method uses team’s past data, the team

has the ability to both influence the forecasts and

determine the confidence level at which they want

to make a commitment.

16

At Ultimate, each team’s release is independent

which means that each team has its own release

dates. Using the story data from the teams as

outlined in Section 3, and feeding that data into an

MCS, we have put together a release dashboard

that tracks each team’s progress toward its target

dates.

 Below is a screenshot of the Monte Carlo release

tracking dashboard that gets updated every hour

each day to reflect the completion likelihood for

every release currently in progress.

The information here also includes the code freeze

date for the release, stories remaining to be closed

and the date where we can say with 85 percent

confidence that the team will be done with the

stories in the release.

Usually, the teams commit to higher levels of

confidence. This means that they are committing to

fewer stories that they would have committed to

had they used an average to make the commitment.

Once the initial commitment has been met, the

Monte Carlo predictions start telling us how likely is

the team to complete the new work that they have

pulled in. This empowers the team to commit to

new work when they have the capacity to do so.

As the date for the release gets closer the

possibility of missing the release (if the team has

slowed down for any reason), increases. Each team

figures out the point at which they are in the red

zone and starts having conversations about risk

mitigation at that point.
17

Figure 4: Monte Carlo Dashboard

This dashboard gives us a single place where the

organization can look and see the risk of any given

release completing on time.

This dashboard is of such importance to our Agile

practice at scale, that it becomes the focal point of

an organization-wide daily tactical meeting called

the Daily Product Review.

THE DAILY PRODUCT
REVIEW

The Daily Product Review (DPR) is Ultimate

Software’s successor to the Scrum of Scrums. 18

The DPR, which is a 15-minute daily meeting, brings

together the key metrics of Cycle Time and release

completion likelihood in one place to provide the

overall scorecard for the development organization.

It reinforces the metrics and practices we care

about on a daily basis. Ultimate has a large

development organization where teams run

autonomously and (for the most part)

independently.

The DPR helps the leads of the teams come

together to reaffirm that we are all part of a greater

whole. Below are some pieces of the DPR board that

help us reinforce and scale these practices.

A slightly modified version of the Monte Carlo

dashboard in Figure 4 finds its way to the DPR

board.

This view is updated only once a day in the morning

and for the Stories Remaining and Completion

Likelihood columns contains the changes since the

same time on the previous day.

When a team’s release starts to go red or starts

slipping further into red they usually respond with

any combination of the following strategies –

 • Reducing the scope of the release.

 • Moving the date for the release.

 • Working extra hours to bring the remaining

stories count down.

 • Or some combination of part or all of the above.

19

Another part of the DPR board is the individual

Team Updates tiles. These tiles are color coded

green, yellow or red based on the number of stories

that the team has above the 95th percentile of the

Cycle Times for their stories.

The team can add notes to their tiles with the

dependencies that are causing the stories to take a

long time and the course of action they are taking

to address the long running stories.

The assumption here is that anything exceeding the

95th percentile is probably something out of the

team’s control.

As can be seen in the updates from the Payroll team

below, there first story is blocked due to an

external dependency and the second was blocked

due to the lack of proper builds.

The manager of the development team which is

blocked, usually takes the lead in trying to resolve

the issue.

With a shared understanding of how important the

resolution of these blockages is to the predictability

of the teams, managers of the teams causing the

blockage, work to resolve these through the course

of the day.

20

Figure 5: Team Updates in DPR

MOVING BEYOND
DEVELOPMENT

Adopting Agile techniques has provided the

benefits of increased productivity and

predictability. For an overall perspective though,

Ultimate Software is in a waterfall sandwich.

The Agile development organization sits in the

middle of traditional sales and support

organizations and traditional deployment and

activation organizations.As a part of the next

evolution of Agile and flow based thinking at

Ultimate Software, we are expanding out to

organizations that flank development.

Ultimate’s culture that encourages managers and

employees to experiment and make the right

decisions for Ultimate, has aided greatly in

spreading the principles outside of core

development. Departments within Ultimate

Software have started pulling the services of the

Agile coaches within development to help them

with the same principles. 21

Our closer engagement with Product Strategy and

the ability to give them higher degree of

predictability has vastly improved Development’s

ability to assist with support issues without

interrupting active work.

Tier 3 support has also adopted Kanban practices in

order to improve their ability to support our

customers.

Product Strategy is able to utilize the predictability

and productivity gains of Development to provide

better guidance to Sales on upcoming products and

features.

As we continue to improve the predictability that we

can provide Sales, we can start creating feature

requests and priorities in conjunction with Sales.

Features can then be pulled all the way through the

value stream and tracking of cycle time and

throughput can allow us to make and keep more

accurate commitments to our customers.

While the upstream expansion helps us get better

at the creation of value, expanding downstream to

deployment and activations is where we can

improve the delivery of value to our customers.

As Ultimate Software has started working on new

products, we have pulled deployment activities onto

the teams.

For our older products, we have always done a

handoff to our Sass deployment group. 22

We broke the “over the wall” mentality by

embedding deployment engineers on the

development teams for new products and helping

them educate the rest of the team on maintaining

their own deployment pipelines.

The teams were initially concerned about taking on

the additional responsibility. Those fears have

abated as the teams have realized the support that

is available to them form the rest of the

organization.

This practice has also greatly reduced the

occurrences of production environment surprises.

Since the teams help build the environments that

they deploy code to, the code does not behave

unexpectedly when pushed to production.

These teams are supported by three groups outside

of Product Engineering.

Groups that manage the Build and Deployment

infrastructure for the products being developed

have also adopted Kanban principles and started

measuring cycle times for making infrastructure

available to teams.

They have established SLAs for different types of

requests and have become predictable with these

metrics.

We can now see a feature make its journey all the

way from a request generated in Sales to Product

Strategy, to Development and finally to Production.

23

Once we are able to track the progress of a feature

in this manner, we can start identifying

opportunities for improvement in the inception-to-

delivery cycle.

The organization as a whole can identify where

features get stuck and apply our understanding of

flow to eliminate the time features have to wait in

queues across the entire organization.

Another aspect that is downstream from the

development and even the deployment group is

activations.

Activations is the group that helps a new customer

go live with Ultimate Software’s products. The

activation process can take up to a year and can

involve multiple teams.

Every day that a customer is in the activation phase,

Ultimate Software is investing time, but not

receiving any revenue.

This is an area that can use the benefits that the

Development Organization has gained from flow

and Agile practices.

Development has started working with Activations

to share the principles and practices that have

made a positive difference in the predictability and

speed of completion for deliverables.

24

Moving Kanban outside the lines is the next large

step for Ultimate Software. We have already started

moving in this direction through our work with

support and deployment teams.Ultimate continues

to scale out its Agile implementation without using

any established frameworks.

Setting up the right channels of communication and

visualizing our work in a manner that is easily

understood by all is at the crux of how Ultimate has

been able to successfully adopt and evolve Agile at

scale.

CONCLUSION

Through the innovative use of flow practices and

principles Ultimate has been able to achieve many

of the benefits of a Lean-Agile implementation

without the use of a heavyweight framework:

 • Improved Productivity: More features released

to customers more quickly means higher overall

customer satisfaction

 • Streamlined Planning: Using techniques like

Monte Carlo Simulation, the time it takes to plan a

release has been reduced from days to minutes

 • Early Warning Signals: Signs that a given story

or a given release may be going off track are

observed much earlier in the process allowing us to

react and adjust

 • Easily Pivot: Without a detailed understanding

of our true capacity we would not be able to pivot

to handle new customer requests and/or

government regulations 25

We have been able to recognize these benefits

much more quickly and at a fraction of the cost of a

more traditional scaled Agile implementation. The

practice outlined here are ones which any

organization—regardless of size—can easily pick up

and see immediate results.

ACKNOWLEDGMENTS

We’d like to acknowledge Rafael Santos and

Fernando Trigoso who while no longer at Ultimate

Software played key roles in our early agile and

Kanban success.

AUTHORS

 Steve Reid has been at Ultimate Software
 for over 16 years developing large scale
 Human Capital Management systems. In
 his current role he’s a Fellow responsible
 for Lean Agile thinking. Prior to this, he
 served various management positions
including VP, Software Engineering and Director,
Software Engineering.

 Daniel Vacanti has been working in the
 software industry for over 20 years. In
 2006 he helped to develop the Kanban
 Method for knowledge work and has
 been helping teams all over the world to
implement flow principles ever since. His book
“Actionable Agile Metrics for Predictability” was
published in 2015 and is the definitive guide for
using flow metrics in an Agile context.

26

 Prateek has been leading and working

 on agile teams for the over 10 years.

 Starting with XP, then Scrum and now

 working in a Kanban system, Prateek is

currently involved in conducting training and

coaching for teams regarding Kanban and Lean

principles at Ultimate Software.

27

